这份技术报告描述了我们对2022年SOCCERNET挑战的行动提交。挑战是CVPR 2022 ActivityNet研讨会的一部分。我们的提交是基于我们最近提出的一种方法,该方法的重点是通过一组密集采样的检测锚来提高时间精度。由于其对时间精度的重视,这种方法能够在使用较小的时间评估公差的严格平均地图度量上产生竞争结果。最近提出的指标是用于挑战的评估标准。为了进一步改善结果,我们在这里引入了预处理和后处理步骤的小变化,并通过晚期融合结合不同的输入特征类型。本报告描述了由此产生的总体方法,重点是引入的修改。我们还描述了所使用的培训程序,并提出了我们的结果。
translated by 谷歌翻译
我们提出了一个用于视频中时间精确的动作发现的模型,该模型使用一组密集的检测锚,预测了每个锚的检测置信度和相应的细粒时间位移。我们尝试两个行李箱体系结构,两者都能够合并大的时间上下文,同时保留精确本地化所需的较小规模的功能:U-NET的一维版本和变压器编码器(TE)。我们还建议通过应用清晰度最小化(SAM)和混合数据扩展来提出这种培训模型的最佳实践。我们在Soccernet-V2上实现了新的最新技术,这是同类的最大足球视频数据集,其时间定位明显改善。此外,我们的消融表明:预测时间位移的重要性;U-Net和TE Trunks之间的权衡;以及与SAM和MIDUP培训的好处。
translated by 谷歌翻译
对多人体育广播视频中的关键参与者和行动的全面了解是一个具有挑战性的问题。与新闻或金融视频不同,体育视频有限。虽然对多人体育和玩家的检测的操作识别都有强大的研究,但了解视频帧中的上下文文本仍然是体育视频理解中最有影响力的途径之一。在这项工作中,我们研究体育时钟的极其准确的语义文本检测和识别,以及其中的挑战。我们遵守运动时钟的独特属性,这使得难以利用通用预训练的探测器和识别器,因此可以准确地理解文本以与外部知识对齐的程度。我们提出了一种新的遥远监督技术来自动构建体育时钟数据集。除了合适的数据增强之外,与任何最先进的文本检测和识别模型架构相结合,我们提取极其准确的语义文本。最后,我们分享了我们的计算架构流水线,以扩展工业设置中的该系统,并提出了一个强大的数据集,以验证我们的结果。
translated by 谷歌翻译
When robots learn reward functions using high capacity models that take raw state directly as input, they need to both learn a representation for what matters in the task -- the task ``features" -- as well as how to combine these features into a single objective. If they try to do both at once from input designed to teach the full reward function, it is easy to end up with a representation that contains spurious correlations in the data, which fails to generalize to new settings. Instead, our ultimate goal is to enable robots to identify and isolate the causal features that people actually care about and use when they represent states and behavior. Our idea is that we can tune into this representation by asking users what behaviors they consider similar: behaviors will be similar if the features that matter are similar, even if low-level behavior is different; conversely, behaviors will be different if even one of the features that matter differs. This, in turn, is what enables the robot to disambiguate between what needs to go into the representation versus what is spurious, as well as what aspects of behavior can be compressed together versus not. The notion of learning representations based on similarity has a nice parallel in contrastive learning, a self-supervised representation learning technique that maps visually similar data points to similar embeddings, where similarity is defined by a designer through data augmentation heuristics. By contrast, in order to learn the representations that people use, so we can learn their preferences and objectives, we use their definition of similarity. In simulation as well as in a user study, we show that learning through such similarity queries leads to representations that, while far from perfect, are indeed more generalizable than self-supervised and task-input alternatives.
translated by 谷歌翻译
We address the problem of extracting key steps from unlabeled procedural videos, motivated by the potential of Augmented Reality (AR) headsets to revolutionize job training and performance. We decompose the problem into two steps: representation learning and key steps extraction. We employ self-supervised representation learning via a training strategy that adapts off-the-shelf video features using a temporal module. Training implements self-supervised learning losses involving multiple cues such as appearance, motion and pose trajectories extracted from videos to learn generalizable representations. Our method extracts key steps via a tunable algorithm that clusters the representations extracted from procedural videos. We quantitatively evaluate our approach with key step localization and also demonstrate the effectiveness of the extracted representations on related downstream tasks like phase classification. Qualitative results demonstrate that the extracted key steps are meaningful to succinctly represent the procedural tasks.
translated by 谷歌翻译
An oft-cited open problem of federated learning is the existence of data heterogeneity at the clients. One pathway to understanding the drastic accuracy drop in federated learning is by scrutinizing the behavior of the clients' deep models on data with different levels of "difficulty", which has been left unaddressed. In this paper, we investigate a different and rarely studied dimension of FL: ordered learning. Specifically, we aim to investigate how ordered learning principles can contribute to alleviating the heterogeneity effects in FL. We present theoretical analysis and conduct extensive empirical studies on the efficacy of orderings spanning three kinds of learning: curriculum, anti-curriculum, and random curriculum. We find that curriculum learning largely alleviates non-IIDness. Interestingly, the more disparate the data distributions across clients the more they benefit from ordered learning. We provide analysis explaining this phenomenon, specifically indicating how curriculum training appears to make the objective landscape progressively less convex, suggesting fast converging iterations at the beginning of the training procedure. We derive quantitative results of convergence for both convex and nonconvex objectives by modeling the curriculum training on federated devices as local SGD with locally biased stochastic gradients. Also, inspired by ordered learning, we propose a novel client selection technique that benefits from the real-world disparity in the clients. Our proposed approach to client selection has a synergic effect when applied together with ordered learning in FL.
translated by 谷歌翻译
This paper tackles the challenging problem of automating code updates to fix deprecated API usages of open source libraries by analyzing their release notes. Our system employs a three-tier architecture: first, a web crawler service retrieves deprecation documentation from the web; then a specially built parser processes those text documents into tree-structured representations; finally, a client IDE plugin locates and fixes identified deprecated usages of libraries in a given codebase. The focus of this paper in particular is the parsing component. We introduce a novel transition-based parser in two variants: based on a classical feature engineered classifier and a neural tree encoder. To confirm the effectiveness of our method, we gathered and labeled a set of 426 API deprecations from 7 well-known Python data science libraries, and demonstrated our approach decisively outperforms a non-trivial neural machine translation baseline.
translated by 谷歌翻译
Using a comprehensive sample of 2,585 bankruptcies from 1990 to 2019, we benchmark the performance of various machine learning models in predicting financial distress of publicly traded U.S. firms. We find that gradient boosted trees outperform other models in one-year-ahead forecasts. Variable permutation tests show that excess stock returns, idiosyncratic risk, and relative size are the more important variables for predictions. Textual features derived from corporate filings do not improve performance materially. In a credit competition model that accounts for the asymmetric cost of default misclassification, the survival random forest is able to capture large dollar profits.
translated by 谷歌翻译
Tensor robust principal component analysis (RPCA), which seeks to separate a low-rank tensor from its sparse corruptions, has been crucial in data science and machine learning where tensor structures are becoming more prevalent. While powerful, existing tensor RPCA algorithms can be difficult to use in practice, as their performance can be sensitive to the choice of additional hyperparameters, which are not straightforward to tune. In this paper, we describe a fast and simple self-supervised model for tensor RPCA using deep unfolding by only learning four hyperparameters. Despite its simplicity, our model expunges the need for ground truth labels while maintaining competitive or even greater performance compared to supervised deep unfolding. Furthermore, our model is capable of operating in extreme data-starved scenarios. We demonstrate these claims on a mix of synthetic data and real-world tasks, comparing performance against previously studied supervised deep unfolding methods and Bayesian optimization baselines.
translated by 谷歌翻译
Reinforcement learning can enable robots to navigate to distant goals while optimizing user-specified reward functions, including preferences for following lanes, staying on paved paths, or avoiding freshly mowed grass. However, online learning from trial-and-error for real-world robots is logistically challenging, and methods that instead can utilize existing datasets of robotic navigation data could be significantly more scalable and enable broader generalization. In this paper, we present ReViND, the first offline RL system for robotic navigation that can leverage previously collected data to optimize user-specified reward functions in the real-world. We evaluate our system for off-road navigation without any additional data collection or fine-tuning, and show that it can navigate to distant goals using only offline training from this dataset, and exhibit behaviors that qualitatively differ based on the user-specified reward function.
translated by 谷歌翻译